Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Chin Med Assoc ; 2022 Oct 21.
Article in English | MEDLINE | ID: covidwho-2237216

ABSTRACT

COVID-19 has greatly affected human life for over 3 years. In this review, we focus on smart healthcare solutions that address major requirements for coping with the COVID-19 pandemic, including (1) the continuous monitoring of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), (2) patient stratification with distinct short-term outcomes (e.g. mild or severe diseases) and long-term outcomes (e.g. long COVID), and (3) adherence to medication and treatments for patients with COVID-19. Smart healthcare often utilizes medical artificial intelligence (AI) and cloud computing and integrates cutting-edge biological and optoelectronic techniques. These are valuable technologies for addressing the unmet needs in the management of COVID. By leveraging deep/machine learning (DL/ML) capabilities and big data, medical AI can perform precise prognosis predictions and provide reliable suggestions for physicians' decision-making. Through the assistance of the Internet of Medical Things (IoMT), which encompasses wearable devices, smartphone apps, Internet-based drug delivery systems, and telemedicine technologies, the status of mild cases can be continuously monitored and medications provided at home without the need for hospital care. In cases that develop into severe cases, emergency feedback can be provided through the hospital for rapid treatment. Smart healthcare can possibly prevent the development of severe COVID-19 cases and therefore lower the burden on intensive care units.

2.
J Chin Med Assoc ; 86(3): 274-281, 2023 03 01.
Article in English | MEDLINE | ID: covidwho-2222868

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is a global pandemic caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). It has brought tremendous challenges to public health and medical systems around the world. The current strategy for drug repurposing has accumulated some evidence on the use of N -acetylcysteine (NAC) in treating patients with COVID-19. However, the evidence remains debated. METHODS: We performed the systematic review and meta-analysis that complies with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Five databases and reference lists were searched from inception to May 14, 2022. Studies evaluating the efficacy of NAC in treating patients with COVID-19 were regarded as eligible. The review was registered prospectively on PROSPERO (CRD42022332791). RESULTS: Of 778 records identified from the preliminary search, four studies were enrolled in the final qualitative review and quantitative meta-analysis. A total of 355 patients were allocated into the NAC group and the control group. The evaluated outcomes included intubation rate, improvement, duration of intensive unit stay and hospital stay and mortality. The pooled results showed nonsignificant differences in intubation rate (OR, 0.55; 95% CI, 0.16-1.89; p = 0.34; I2 = 75%), improvement of oxygenation ([MD], 80.84; 95% CI, -38.16 to 199.84; p = 0.18; I2 = 98%), ICU stay (MD, -0.74; 95% CI, -3.19 to 1.71; p = 0.55; I2 = 95%), hospital stay (MD, -1.05; 95% CI, -3.02 to 0.92; p = 0.30; I2 = 90%), and mortality (OR, 0.58; 95% CI, 0.23-1.45; p = 0.24; I2 = 54%). Subsequent trial sequential analysis (TSA) showed conclusive nonsignificant results for mortality, while the TSA for the other outcomes suggested that a larger sample size is essential. CONCLUSIONS: The current evidence reveals NAC is not beneficial for treating patients with COVID- 19 with regard to respiratory outcome, mortality, duration of ICU stay and hospital stay.


Subject(s)
COVID-19 , Humans , Acetylcysteine/therapeutic use , SARS-CoV-2 , Length of Stay
3.
J Chin Med Assoc ; 85(9): 891-895, 2022 09 01.
Article in English | MEDLINE | ID: covidwho-1931931

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants of concern can infect people of all ages and can cause severe diseases in children, such as encephalitis, which require intensive care. Therefore, vaccines are urgently required to prevent severe disease in all age groups. We reviewed the safety and efficacy profiles of mRNA vaccines-BNT162b2 and mRNA-1273-demonstrated by clinical trials or observed in the real world. mRNA-1273 is effective in preventing SARS-CoV-2 infection in preschool children (6 months-6 years old). Both BNT162b2 and mRNA-1273 are effective in preventing SARS-CoV-2 infection in school-aged children and adolescents, thereby preventing post-coronavirus disease (COVID) conditions. The common side effects of vaccination are pain at the injection site, fatigue, and headache. Myocarditis and pericarditis are uncommon. Monitoring post-vaccination troponin levels may help prevent severe cardiac events. The SARS-CoV-2 coronavirus mutates its genome to overcome the herd immunity provided by mass vaccinations; therefore, we may need to develop new generations of vaccines, such as those using viral nucleocapsid proteins as antigens. In conclusion, the mRNA vaccines are generally safe and effective in preventing severe diseases and hospitalization among children and adolescents.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adolescent , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Child , Child, Preschool , Hospitalization , Humans , Nucleocapsid Proteins , SARS-CoV-2 , Troponin , Vaccination , Viral Vaccines
4.
Diagnostics (Basel) ; 12(4)2022 Apr 13.
Article in English | MEDLINE | ID: covidwho-1809765

ABSTRACT

Traditional otoscopy has some limitations, including poor visualization and inadequate time for evaluation in suboptimal environments. Smartphone-enabled otoscopy may improve examination quality and serve as a potential diagnostic tool for middle ear diseases using a telemedicine approach. The main objectives are to compare the correctness of smartphone-enabled otoscopy and traditional otoscopy and to evaluate the diagnostic confidence of the examiner via meta-analysis. From inception through 20 January 2022, the Cochrane Library, PubMed, EMBASE, Web of Science, and Scopus databases were searched. Studies comparing smartphone-enabled otoscopy with traditional otoscopy regarding the outcome of interest were eligible. The relative risk (RR) for the rate of correctness in diagnosing ear conditions and the standardized mean difference (SMD) in diagnostic confidence were extracted. Sensitivity analysis and trial sequential analyses (TSAs) were conducted to further examine the pooled results. Study quality was evaluated by using the revised Cochrane risk of bias tool 2. Consequently, a total of 1840 examinees were divided into the smartphone-enabled otoscopy group and the traditional otoscopy group. Overall, the pooled result showed that smartphone-enabled otoscopy was associated with higher correctness than traditional otoscopy (RR, 1.26; 95% CI, 1.06 to 1.51; p = 0.01; I2 = 70.0%). Consistently significant associations were also observed in the analysis after excluding the simulation study (RR, 1.10; 95% CI, 1.00 to 1.21; p = 0.04; I2 = 0%) and normal ear conditions (RR, 1.18; 95% CI, 1.01 to 1.40; p = 0.04; I2 = 65.0%). For the confidence of examiners using both otoscopy methods, the pooled result was nonsignificant between the smartphone-enabled otoscopy and traditional otoscopy groups (SMD, 0.08; 95% CI, -0.24 to 0.40; p = 0.61; I2 = 16.3%). In conclusion, smartphone-enabled otoscopy was associated with a higher rate of correctness in the detection of middle ear diseases, and in patients with otologic complaints, the use of smartphone-enabled otoscopy may be considered. More large-scale studies should be performed to consolidate the results.

5.
Otol Neurotol ; 42(8): 1275-1284, 2021 09 01.
Article in English | MEDLINE | ID: covidwho-1358514

ABSTRACT

OBJECTIVE: To investigate the influence of the COVID-19 pandemic on operative practices of otology and neurotology providers internationally. STUDY DESIGN: Cross-sectional survey. METHODS: A 78-question survey was distributed to otologists and neurotologists between May 12, 2020 and June 8, 2020 to assess the impact of the pandemic on surgical practices. Sections within the survey delineated time periods: prior to the crisis, onset of the crisis, during the crisis, postcrisis transition. RESULTS: Of 396 survey respondents, 284 participants from 38 countries met inclusion criteria.Respondents were 16.9% female and 82.4% male, with a most common age range of 40 to 49 years (36.3%). 69.8% of participants had been in practice for over 10 years and most respondents worked in an academic medical center (79.2%). The average operative weekly caseload was 5.3 (SD 3.9) per surgeon prior to the crisis, 0.7 (SD 1.2) during the COVID-19 crisis, and 3.5 (SD 3.3) for those who had begun a postcrisis transition at the time of survey administration (p < 0.001). 71.5% of providers did not perform an elective otologic or neurotologic operative procedure during the initial crisis period. 49.8% reported modifying their surgical technique due to the COVID-19 pandemic. Use of powered air-purifying respirators and filtering facepiece 2 or 3 (FFP2/FFP3) respirators were in minimal supply for 66.9% and 62.3% of respondents, respectively. CONCLUSION: The COVID-19 pandemic impacted the otology and neurotology community globally, resulting in significant changes in operative volume and case selection. Modification of surgical technique and shortages of personal protective equipment were frequently reported.


Subject(s)
COVID-19 , Pandemics , Adult , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Otolaryngologists , SARS-CoV-2 , Surveys and Questionnaires
SELECTION OF CITATIONS
SEARCH DETAIL